The article is focused on the frequently discussed topic of suburban and regional railway system modernization comparing different approaches to consider by local authorities. To make a precedent and to better contribute to practical problems, a middle-sized city of Olomouc (Czechia) is chosen to demonstrate the upgraded regional transport system design with respect to the regional specifics and utilizing of the current railway and tramway infrastructure. With a new, innovative approach to the potential tram-train implementation in the Olomouc Region, the technical and operational features of the current tram-train systems and vehicles are analysed. By implementing the most suitable ones, the regional tram-train system proposal in the conditions of Olomouc may serve as a guide for similar planned systems in the countries with limited legislative and technical experience regarding the tram-train systems (especially in Central Europe), their suitability for the region, their design, and introduction. For the qualitative assessment of the different relevant approaches, a comparative analysis is used. As a result of the analysis, a tram-train system is recommended for the further transport plan-ning stages as it significantly improves both urban and suburban public transport in the Olomouc Region by increasing their average speed and accessibility. For better financial and technical implementation, the project is divided into several stages. Unlike the already presented solutions, it combines shorter travel times of the regional rail and the populated area coverage reached by regional buses and serves as both an attractive and financially sane extension of a regional public transport system.
The paper presents the method of integration, which is supposed to be applied to the structure of the railway infrastructure topological description system expressed at the level of detail designated as microL2 in order to transform it into the structure expressed at the level of detail designated as macroN0,L0 . The microL2 level is the level of detail at which individual tracks in the structural sense and turnout branches are recognized, while the macroN0,L0 level is the level of individual operational points and line sections. The proposed integration algorithm takes into account both the parameter values of the individual elements appearing at the reference level of detail microL2 and their topological interconnectedness. Based on these aspects, these elements are integrated into the elements of the derived level of detail macroN0,L0 that can be described by the transformed parameter values. The relations between the respective elements are also transformed accordingly. While describing the transformation algorithm, the terminology and principles of the UIC RailTopoModel are used.
The present article focuses on the efficient deployment of dual locomotives in regional rail freight transport considering the quantification of traction energy and energy savings. In the first part of the article, a categorization of dual locomotives, according to their power output in electric and alternative traction (and ratio of both power outputs) is proposed. The potential of deployment of chosen dual locomotives in Central European conditions (a sub-network of Czech railway network around mainlines electrified with AC) is verified by calculation of traction energy consumption of the model train (with two examples of dual locomotives). In addition to non-stop running through the entire line, traction energy consumption of stop (and following acceleration) in each intermediate station is calculated, for a particular direction. Then, appropriate freight train paths for passing passenger trains and saving of traction energy are proposed. The results are supplemented by sensitivity analysis in the form of calculation of traction energy consumption with variable numbers of loaded wagons, with the help of iPLAN/FBS timetabling software. The limitations are the maximum length or gross mass of the train. Finally, the conclusions obtained from the computational examples are evaluated and recommendations for appropriate deployment of dual locomotives and planning of targeted improvements of infrastructure are formulated.
Motivating people to switch to public transport from using their own car is one of the most important parts on the way to accomplishing the Green Deal 2050 challenge. In the Czech Republic, where the number of passengers was rapidly rising in the pre-pandemic time, individual car transport still offers many more travel benefits than railway lines for most long-distance relations. How to strategically develop the railway infrastructure? Will the planned high-speed railways really be the appropriate solution to this problem in time? Will they satisfy all the different requirements of passengers who are potentially able to switch from car to train?
This article is focused on the reliability of transfer connections in regional railway transport. The reliability of the transportation chain in public transport is an essential element for functional, attractive, and long-term sustainable public transport. This article discusses the causes and consequences of railway traffic disruption and related impacts on passenger transfer connections. To reduce the negative impacts of common operational disruptions, the authors present an original approach for determining transfer waiting times between delayed trains based on a modified critical path method (CPM). In addition, an example of the implementation of this method in regional railway transport in the Vysočina Region of the Czech Republic is provided.
Freight rail transport plays key role in the transition to sustainable development. However, on European mainlines, freight trains have to cope with busy passenger operation-mostly in the form of (integrated) periodic timetables. Freight trains are characterized with very diverse parameters, so scheduling pre-arranged periodic freight train paths (PFTPs) on the basis of one sample freight train does not meet the needs of most freight operators. This article introduces new detailed framework process for hierarchized construction of differentiated (segmented) pre-arranged PFTPs. The process considers fluctuations in demand for capacity from freight rail operators, so the quality of a freight train path in terms of number of stops is related with its construction priority. This way, the process enhances competitiveness and decreases energy consumption of freight railway, as a factor for sustainable development. Correctness of the framework process is tested on the example of the Prague-Dresden mainline, in the context of prospective (denser) model passenger timetable. Results show that above 70% of real freight trains from the available historical data can fit into the proposed PFTPs. As a conclusion, the authors recommend reduction of service of the least frequent stops of regional trains to reduce number of scheduled stops for freight trains.
The paper summarizes exhaust emissions measurements on two diesel-electric locomotives and one diesel-hydraulic railcar, each tested for several days during scheduled passenger service. While real driving emissions of buses decrease with fleet turnaround and have been assessed by many studies, there are virtually no realistic emissions data on diesel rail vehicles, many of which are decades old. The engines were fitted with low-power portable online monitoring instruments, including a portable Fourier Transform Infra Red (FTIR) spectrometer, online particle measurement, and in two cases with proportional particle sampling systems, all installed in engine compartments. Due to space constraints and overhead electric traction lines, exhaust flow was computed from engine operating data. Real-world operation was characterized by relatively fast power level transitions during accelerations and interleaved periods of high load and idle, and varied considerably among service type and routes. Spikes in PM emissions during accelerations and storage of PM in the exhaust were observed. Despite all engines approaching the end of their life, the emissions per passenger-km were very low compared to automobiles. Tests were done at very low costs with no disruption of the train service, yielded realistic data, and are also applicable to diesel-hydraulic units, which cannot be tested at standstill.